Rapport de stage de 1ère année de Master Biodiversité et Écosystèmes Tropicaux (BEST) parcours Biodiversité et Écosystèmes Naturels (BEN) promotion 2010/2011
Université de La Réunion

DÉFINITION D’UN ÉTAT INITIAL POUR LE CONTRÔLE DES RATS DANS LA RÉSERVE DE LA ROCHE-ÉCRITE

Stage effectué avec la Société Études Ornithologiques de La Réunion (SEOR)
13, ruelle des orchidées
CAMBUSTON
97440 SAINT ANDRÉ

Tuteur de stage : FOUILLOT Damien
Encadrant universitaire : BESSE Pascale
Rapporteur : STRASBERG Dominique

1 Référent SEOR pour la conservation du Tuit-tuit
2 Responsable pédagogique du M1 BEST, UMR PVBM, Université de La Réunion
3 Directeur-adjoint de l’UMR PVBM, Université de La Réunion
Abstract:

Since September 2010, a five-year project called LIFE+CAP DOM started in the overseas departments, which participates the Société d’Études Ornithologiques de la Réunion (SEOR) and the Parc National. It’s through this project, and under the conservation of a critically endangered species (IUCN), the Tuit-tuit (*Coracina newtoni*), that several methods of rats control (the main threat for this species) will be studied between May and September 2011 (A1 action of the LIFE) by the comité de pilotage of the project. The goal of this document is to give technical clues in order to compare pros and cons of different methods of large scale control to adjust the methodology of control that will be applied from 2012 to 2015 in the Réserve de la Roche-Écrite, last habitat of the Tuit-tuit.

For that, various field experiments were leaded during the study and the collected datas were analyzed to bring elements to justify the use of the control techniques selected for the LIFE+CAP DOM project, that will be soon conducted on the habitat of the Tuit-tuit.

Keywords:

RAT – CONTROL TECHNIQUES – BAITS – TUIT-TUIT – "LIFE+CAP DOM" PROJECT
Résumé :

Depuis septembre 2010, un projet LIFE+CAP DOM d’une durée de 5 ans a débuté dans les départements d’outre-mer, auquel participe la Société d’Études Ornithologiques de la Réunion (SEOR) et le Parc National. C’est donc sur ce projet et dans le cadre de la conservation d’une espèce en danger critique d’extinction (IUCN), le Tuit-tuit (<i>Coracina newtoni</i>), que plusieurs méthodes de lutte contre les rats (principal menace pour l’espèce) seront étudiées entre mai et septembre 2011 (Action A1 du LIFE) par le comité de pilotage du projet. Ce rapport a pour but d’apporter des éléments techniques pour comparer les avantages et les inconvénients de différentes méthodes de lutte à grande échelle et ajuster au mieux la méthodologie qui sera appliquée entre 2012 et 2015 dans la Réserve de la Roche-Écrite, dernier habitat du Tuit-Tuit.

Pour cela, diverses expériences de terrain ont été menées au cours de ce stage et les données collectées ont été analysées afin d’apporter des éléments pour justifier l’emploi des techniques de lutte retenues pour le projet LIFE+CAP DOM et prochainement mises en place sur l’habitat du Tuit-tuit.

Mots clés :

RAT – TECHNIQUES DE CONTRÔLE – APPÂTS – TUIT-TUIT – PROJET "LIFE + CAP DOM"
Remerciements :

Tout d'abord un très grand merci aux hommes de terrain, non encore mieux aux "hommes des bois" : Damien, Jerry et Jean-François (qui restera le meilleur raticide qui soit). Pour faire une citation, "ce sont des braconniers, mais du bon côté". Vous nous avez permis de découvrir le mystérieux Tuit-tuit et la magnifique forêt primaire de la Roche-Écrite jusqu'aux recoins les moins accessibles. Grâce à vos incroyables connaissances du milieu et votre bonne humeur ce stage de terrain nous aura comblé. Un grand merci également à Valentin pour son aide et son travail. Quelle équipe ! De la randonnée tous les jours, presque pas de pluie (!), des soirées carri et arranzés...

Nous remercions aussi tous les intervenants qui nous ont accompagnés sur le terrain et/ou qui nous ont aidés d'une manière ou d'une autre, et notamment David, FX (expert informatique-bricole), Florian (caméraman philosophe), Thierry et Thomas.

Merci à Yannick et Damien pour leurs corrections et sans qui le stage n'aurait pas eu lieu, ainsi qu'à toute la SEOR pour leur aide, leurs conseils et les bons instants passés au bureau (carri pimentés et voyage de claviers) et au CDS (papangues et autres paille-en-queues ...). Un grand merci à Paule pour sa clairvoyance administrative et ses avis éclairés sur l'actualité.

Un petit mot à tous les compagnons de jeux du mardi soir au colosse. Des matchs de Kubb avec "CédricLeSuédois", aux essais de monocycle avec "Damientoujoursl'heure", le tout en passant sur la slack pour aller chercher les pizzas.
Sommaire :

Abstract / Résumé... i
Remerciements.. ii
Listes des figures et tableaux... iii

I. INTRODUCTION ... 1 à 3
 1) Généralités... 1
 2) Introduction... 1
 3) Contexte du stage... 2
 4) Problématique... 2

II. SITES D’ETUDE .. 4 à 6
 1) La Roche-Écrite... 4
 2) Macrofaune présente... 4
 3) Choix des parcelles test.. 4

III. MATERIEL ET METHODES .. 7 à 11
 1) Protocole de Capture-Marquage-Recapture (CMR) de rats... 8
 2) Protocoles des tests de Durabilité et de Disponibilité... 10

IV. RESULTATS .. 12 à 15
 1) CMR.. 12
 2) Durabilité et disponibilité des appâts.. 14

V. DISCUSSION ... 16 à 21
 1) Interprétation des données des Captures-Marquages-Recaptures... 16
 2) Analyse des données de Durabilité et de Disponibilité.. 18
 3) Optimisation des densités d’appâts et ouverture... 21

Bibliographie.. 22 à 25
Table des annexes... 26
Annexes
• Liste des figures

Figure 1 : Rat noir Rattus rattus (photo Terra Nova libre de droit).
Figure 2 : Rat surmulot Rattus norvegicus (photo Terra Nova libre de droit).
Figure 3 : Tuit-tuit (Coracina newtoni) femelle (à gauche) et mâle (à droite) (Photos F. Theron).
Figure 4 : Carte de l’aire couverte par la Réserve naturelle de la Roche-Écrite, île de La Réunion.
Figure 5 : Comparaison du nombre de couples de Tuit-tuit entre 2005 et 2010 (SEOR 2010).
Figure 6 : Carte de localisation de la ZE (encadrée).
Figure 7 : Granulé non-empoisonnés utilisés pour l’étude (photo T. Micol).
Figure 8 : Piège utilisé pour la capture (photo Petitpas).
Figure 9 : Schéma théorique d’une grille de piégeage de 0,4 ha.
Figure 10 : Distribution semi-normale et valeurs de σ (source : http://www.answers.com).
Figure 11 : Schéma théorique d’un transect pour les tests de durabilité des appâts.
Figure 12 : Appât disposé pour les tests de consommation (photo Petitpas).
Figure 13 : Estimation des déplacements individuels sur le parcelle 1.
Figure 14 : Estimation des déplacements individuels sur la parcelle 2.
Figure 15 : Comparaison de l’évolution de la consommation d’appâts sur les 2 parcelles d’étude.
Figure 16 : Développement de champignons sur un appât (aprè 8 jours en forêt) (photo : Petitpas).
Figure 17 : Suivi de la consommation des appâts pour différentes hauteurs.
• **Liste des tableaux**

Tableau I : Espèces d'oiseaux et de reptiles présentes à la Roche-Écrite (site internet de la SEOR).
Tableau II : Mammifères sauvages introduits et présents à la Roche-Écrite (Kon-Sun-Tack 2006).
Tableau III : Caractéristiques des différents sites de la réserve (SEOR 2010).
Tableau IV : Notation des résultats de piégeage (SEOR 2005).
Tableau V : Récapitulatif des captures de P1.
Tableau VI : Estimations des valeurs des paramètres de population sur P1 (retenus par le modèle).
Tableau VII : Récapitulatif des captures de P2.
Tableau VIII : Estimations des valeurs des paramètres de population sur P2 (retenus par le modèle).
Tableau IX : Synthèse des résultats de durabilité.
Tableau X : Hauteur des appâts disposés lors des tests de disponibilité.
Tableau XI : Données de précipitations (station Météo France du Colorado).
Tableau XII : Quantité d'appâts par m².
Tableau XIII : Doses létales de poisons pour le rat noir et les espèces aviaires non-cibles.
I. INTRODUCTION

1) Généralités

De nombreuses espèces d'oiseaux présentent une diminution des effectifs de leurs populations (Tucker et al. 1994 ; Fuller et al. 1995 ; BirdLife International 2000 ; Chamberlain & Fuller 2000 ; Cumming, Hobson & Van Wilgenburg 2001), appuyant la problématique actuelle liée à la conservation de la biodiversité. La grande vulnérabilité des taxons endémiques insulaires est aujourd'hui un fait universellement admis (Le Neindre 2002). Dans beaucoup d'îles, les espèces ont évolué en absence de prédateurs et d'agents pathogènes, ce qui leur confère une vulnérabilité particulière aux espèces prédatrices introduites.

Des espèces comme le Rat noir (Rattus rattus) (figure 1) ou le Surmulot (Rattus norvegicus) (figure 2) sont parvenues à envahir des environnements insulaires auparavant vierges de leur présence grâce à leurs remarquables aptitudes d'adaptation et aux capacités de déplacement de l'Homme (Soubeyran 2008). Au total, la prédation de R. rattus est connue sur au moins 39 espèces, et celle de R. norvegicus sur au moins 53 espèces d'oiseaux différentes (Atkinson 1985).

2) Introduction

Sur l'île de La Réunion, le Tuit-tuit (Coracina newtoni) ou Échenilleur de La Réunion (figure 3, annexe 1), est une espèce endémique classée depuis 2008 « En danger critique d’extinction » (IUCN). En 2010, le suivi quotidien de la SEOR a permis d'estimer l'effectif mondial de l'espèce entre 25 et 30 couples reproducteurs, tous localisés dans la Réserve de la Roche Écrite (Fouillot 2010) (figure 4).

Figure 1 : Rat noir *Rattus rattus* (photo Terra Nova libre de droit).

Figure 2 : Rat surmulot *Rattus norvegicus* (photo Terra Nova libre de droit).
Depuis 2004, la SEOR a développé une méthode manuelle de contrôle des prédateurs sur l'aire de répartition de la population reproductrice de l'Échenilleur de La Réunion. Cette action a permis de stabiliser les effectifs de l'espèce en 2008 puis d'obtenir une croissance positive avec un taux d'évolution record de 15 % entre 2009 et 2010 (Fouillot 2010). En 2010, l'efficacité de cette méthode a été validée (Sautron & Sintre 2010) mais présente néanmoins plusieurs limites, lesquelles doivent être prises en compte pour les futures actions de conservation.

3) Contexte du stage

Suite à l'évolution de la population au cours des 5 dernières années, il devient à l'heure actuelle impératif d'identifier la stratégie de conservation pour la prochaine décennie passant nécessairement par la mise en œuvre d'une méthodologie de contrôle des rats à grande échelle prenant en compte les avantages et les inconvénients de l'ensemble des méthodes utilisées à travers le monde (annexe 2 « méthode de lutte ») afin d'obtenir une méthode ou un couplage des méthodes pour répondre au mieux à la problématique actuelle de conservation de l'Échenilleur de La Réunion.

Lancés par la Commission Européenne en 1992, les programmes LIFE (L'Instrument Financier pour l'Environnement) sont une des pièces maîtresses de la politique environnementale de l'Union Européenne. En 2007, le dispositif s'est ouvert à l'outre-mer et la SEOR, en partenariat avec le Parc National de la Réunion, a monté un projet, appelé LIFE CAPDOM (www.lifecapdom.com), axé sur la conservation des oiseaux à la Réunion. Ce programme, débuté en septembre 2010, a notamment pour but de préserver la population de Tuit-tuit par le biais d'une action innovante permettant de limiter les prédateurs sur l'ensemble de l'aire de répartition de l'Échenilleur de la Réunion.

4) Problématique

Il paraît illusoire de vouloir éradiquer les populations de rats dans leur totalité au niveau d'une île telle que La Réunion, compte tenu des conditions démographiques (817 000 en 2009, données INSEE), sociales (écotourisme, sentier GR) et écologiques (milieu forestier tropical très dense, relief accidenté et surface conséquente (2512 km²)).
Figure 3 : Tuit-tuit (*Coracina newtoni*) femelle (à gauche) et mâle (à droite) dans leur milieu naturel (photos F. Theron).

Figure 4 : Carte de l'aire couverte par la Réserve naturelle de la Roche-Écrite, île de La Réunion.
Il faut également savoir que la majorité des éradications de rongeurs (78 %) a eu lieu sur des îles de moins de 100 ha et que les rats noirs n’ont été éradiqués avec succès que sur des surfaces de moins de 1000 ha (Howald et al. 2007). Aussi, dans le cas où l’espèce invasive est bien installée au sein des écosystèmes locaux, ce qui semble être le cas du rat noir et du surmulot à La Réunion, entreprendre sa complète éradication peut à terme être dommageable pour ces écosystèmes (Soubeyran 2008). La meilleure alternative consiste donc en la mise en place d’un plan de contrôle des populations de rongeurs permettant de réduire leurs effectifs et de gérer la recolonisation, contrecarrant ainsi les effets négatifs sur les autres espèces (Courchamp, Chapuis & Pascal 2003).

Dans le cadre du programme LIFE+ CAP DOM, l’action préparatoire A1 (« Définition d’une méthodologie de contrôle des rats à La Réunion sur une aire pilote », voir annexe 3) a pour objectif de réaliser :

- un état initial et de définir les enjeux de conservation liés au Tuit-tuit,
- un ajustement fin de la densité des appâts, dans le cadre d’un contrôle des populations de rats, et de l’échelle de distribution en fonction de la densité de rats encore présents,
- des tests sur des parcelles témoins avec des appâts non empoisonnés et analyse des espèces les prélevant (par une surveillance d’une durée de 10 heures par exemple).

Par l’utilisation d’appâts non empoisonnés, présentant les mêmes caractéristiques que ceux utilisés lors de luttes aériennes à travers des programmes de conservation d’oiseaux en Nouvelle-Zélande, Nouvelle-Calédonie et aux îles Fidji, les expériences liées au stage ont pour but de fournir des éléments techniques pour répondre à la faisabilité d’une méthode de lutte aérienne contre les rats en testant :

- la vitesse de consommation de ces appâts corrélée à un ajustement fin de la population de rats sur le site de la Roche-Écrite,
- les durabilités de ces appâts en forêt tropicale.

En parallèle, un autre stage est réalisé afin d'évaluer les impacts collatéraux sur l’avi faune endémique. Les données pourront par la suite être couplées apportant ainsi des informations supplémentaires utiles à l’étude de faisabilité de la méthode de lutte aérienne.
II. SITES D’ÉTUDE

1) La réserve de la Roche-Écrite

Crée en 1999 pour protéger la dernière population d’Echenilleur de La Réunion, elle s’étend de 340 m à 2270 m d’altitude sur de larges planèzes de la Plaine des Chicots, de la Plaine d’Affouches et du massif de la Grande Montagne, séparées par une entaille profonde, la Rivière Saint-Denis. Plus des deux tiers de la surface de la réserve sont occupés par des écosystèmes forestiers tropicaux primaires : forêt complexe de montagne et forêt de Tamarins des Hauts principalement. Elle est traversée par 55 kilomètres de sentiers de randonnées et un gîte touristique est implanté en son centre (Fouillot 2006). Depuis 2007, la réserve a été intégrée au cœur du Parc National de La Réunion.

2) Macrofaune présente

Plusieurs espèces endémiques ou indigènes sont présentes dans le secteur d’études (tableau I), et neuf sont des espèces introduites dont les impacts sont variables. Parmi ces dernières, plusieurs ont un impact non négligeable sur les oiseaux endémiques et notamment le Tuit-tuit. Ces espèces sont toutes des mammifères terrestres introduits par l’Homme volontairement ou non (tableau II).

3) Choix des parcelles test

- **Les critères**

La zone a pu être choisie grâce aux données déjà analysées par la SEOR. Le choix des deux parcelles test s’est fait à partir de cinq critères :

 × **La stratégie de conservation pour la prochaine décennie**

La mise en parallèle des résultats de modélisation, sans et avec dératisation, met en évidence une différence positive de 15% du taux de croissance du second modèle. Comme attendu, la dératisation influence de manière non négligeable la dynamique de la population (Sautron & Cintre 2010).
Tableau I : Espèces d'oiseaux et de reptiles présentes à la Roche-Écrite (site internet de la SEOR).

<table>
<thead>
<tr>
<th>Nom créole</th>
<th>Nom scientifique</th>
<th>Origine</th>
<th>Statut IUCN</th>
<th>Principale menace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lézard vert</td>
<td>Phelsuma borbonica</td>
<td>Endémique</td>
<td>EN</td>
<td>Prédateurs introduits</td>
</tr>
<tr>
<td>Zoizo blanc</td>
<td>Zosterops borbonicus borbonicus</td>
<td>Endémique</td>
<td>LC</td>
<td>Braconnage</td>
</tr>
<tr>
<td>Zoizo vert</td>
<td>Zosterops olivaceus</td>
<td>Endémique</td>
<td>LC</td>
<td>Braconnage</td>
</tr>
<tr>
<td>Tec-tec</td>
<td>Saxicola tectes</td>
<td>Endémique</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Chakouat</td>
<td>Terpsiphone bourbonensis bourbonensis</td>
<td>Endémique</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Tuit-tuit</td>
<td>Coracina newtoni</td>
<td>Endémique</td>
<td>CR</td>
<td>Prédateurs introduits</td>
</tr>
<tr>
<td>Merle péi</td>
<td>Hypsipetes borbonicus</td>
<td>Endémique</td>
<td>LC</td>
<td>Braconnage</td>
</tr>
<tr>
<td>Papangue</td>
<td>Circus maillardi</td>
<td>Endémique</td>
<td>EN</td>
<td>Braconnage</td>
</tr>
<tr>
<td>Salangane</td>
<td>Aerodroma francica</td>
<td>Indigène</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Zirondelle</td>
<td>Phedina borbonica</td>
<td>Indigène</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Ramier</td>
<td>Nesoenas picturatas</td>
<td>Indigène</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Foudi</td>
<td>Foudia madagascarensis</td>
<td>Introduit</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Merle Maurice</td>
<td>Pycnonotus jocosus emeria</td>
<td>Introduit</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Francolin</td>
<td>Margaroperdrix madagascariensis</td>
<td>Introduit</td>
<td>LC</td>
<td></td>
</tr>
</tbody>
</table>

Tableau II : Mammifères sauvages introduits et présents à la Roche-Écrite (Kon-Sun-Tack 2006).

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Nom commun</th>
<th>Nom scientifique</th>
<th>Date d'introduction</th>
<th>Motif de l'introduction</th>
<th>Nuisance(s) pour les oiseaux endémiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat noir</td>
<td>Rattus rattus</td>
<td>1680</td>
<td>Involontaire</td>
<td>Prédation sur les couvées</td>
<td></td>
</tr>
<tr>
<td>Surnulot</td>
<td>Rattus norwegicus</td>
<td>1735</td>
<td>Involontaire</td>
<td>Prédation sur les couvées</td>
<td></td>
</tr>
<tr>
<td>Tange</td>
<td>Terere caudatus</td>
<td>1868</td>
<td>Gibier</td>
<td>Minime</td>
<td></td>
</tr>
<tr>
<td>Musareinge des maisons</td>
<td>Suncus murinus</td>
<td>1925</td>
<td>Involontaire</td>
<td>Minime</td>
<td></td>
</tr>
<tr>
<td>Cerf de Java</td>
<td>Cervus timorens rusua</td>
<td>1955</td>
<td>Gibier</td>
<td>Atteinte du milieu</td>
<td></td>
</tr>
<tr>
<td>Chat</td>
<td>Felis catus</td>
<td>?</td>
<td>Lutte biologique</td>
<td>Prédation sur les oiseaux adultes</td>
<td></td>
</tr>
</tbody>
</table>
Toutefois, en analysant l’évolution de la population entre le noyau de population de la Plaine des Chicots et celui de la Grande Montagne, nous ne pouvons que constater une augmentation forte du nombre de couple sur la Plaine des Chicots (8 en 2005 contre 21 en 2010) et une stabilisation de ce nombre de couples sur le massif de la Grande Montagne (5 en 2005 contre 5 en 2010) (figure 5).

Aujourd’hui, même si nous ne pouvons remettre en cause l’efficacité de le dératisation sur l’évolution de la population, il semble que cette dératisation, même si elle permet d’obtenir des envols de poussins et un bon succès reproducteur sur le massif de la Grande Montagne (19 poussins entre 2004 et 2010) (SEOR 2010), ne soient pas suffisante en terme d’espace protégé pour permettre l’installation de nouveaux couples.

La première hypothèse liée à cette dernière observation est celle d’un relief fortement accidenté permettant à notre équipe de terrain de protéger seulement des petites surfaces autour des nids sans produire un ensemble de sites protégés qui permettrait aux poussins de s’installer sur des nouveaux territoires. En terme de conservation, pour pallier à des problématiques telles que les incendies, les cyclone ou les maladies, il serait toutefois intéressant de développer ce deuxième noyau de population du massif de la Grande Montagne en testant une nouvelle méthode de dératisation à large échelle.

- Deux biotopes différents

Le massif de la Grande Montagne, où sont situées les parcelles, présente 2 types de milieux différents (annexe 4) : Le « Submontain leeward rainforest » et le « montain leeward rainforest ». En effet, il a semblé important de prendre en compte l’existence de biotopes bien différents sur la Réserve par le choix des parcelles test.

- La Diversité et abondance en populations endémiques élevées

L’évaluation de la diversité avifaunistique avec la méthode par Indice de Point d’Écoute (IPA*), et son suivi pendant 5 ans sur l’ensemble des territoires du Tuit-tuit (cf. Tableau I), ont été les éléments majeurs permettant d’opter pour le site retenu.

- Une des parcelle ne se trouve pas dans les secteurs soumis aux actions de dératisation.

Pour tester différents facteurs du milieu, les deux sites possèdent des pressions de population de rats bien différentes.

- L’accessibilité

Le but est d’optimiser le temps passé sur le site et la facilité d’accès, notamment pour le transport de matériel.
Figure 5 : Comparaison du nombre de couples de Tuit-tuit entre 2005 et 2010.
• **Les parcelles test (figure 6)**

 - La première correspond à l'espace non protégé au cours des dernières années avec une densité avifaunistique moins importante que le reste de la réserve (Tableau III) : **parcelle 1**, sur le site de la Plaine d'Affouches ;
 - La seconde est un espace proche de moins de 100 m d'un site dératisé depuis 5 ans et présente la plus haute densité avifaunistique de la réserve (Tableau III) : **parcelle 2**, sur le site des Lataniers.

À noter la présence (avérée depuis 2010) dans la parcelle 1 d'un mâle célibataire Tuit-tuit, et la présence proche dans la parcelle 2 d'au moins trois couples reproducteurs. De plus, la parcelle 1 fait partie des sites où la présence du Lézard vert (*Phelsuma borbonica*, espèce endémique) a été relevée ces 5 dernières années par la SEOR.

À ce sujet, des études portant sur l'action des anticoagulants sur les lézards (Spurr 1993) montrent que leur impact est faible (risque de troubles des centres nerveux) mais que les études sont à poursuivre. Il reste préférable d’utiliser des appâts d’une couleur peu attrayante pour les lézards (bleu ou vert), qui profitent cependant largement aux efforts de contrôle des rats.

Le choix de ces secteurs a pour but de permettre la récupération et la comparaison de données de parcelles différentes et d’ainsi obtenir un gradient représentatif de l’ensemble de la réserve.

IPA : Indice Ponctuel d’Abondance : voir détails en annexe 5.
Figure 6 : Carte de localisation de la ZE (encadrée).

Tableau III : Caractéristiques des différents sites de la réserve (en vert : les sites retenus) (SEOR 2010).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Lataniers (Parcelle 2)</th>
<th>Dos d'Âne</th>
<th>Plaine d'Affouches (Parcelle 1)</th>
<th>Nord Plaine des Chicots</th>
<th>Sud Plaine des Chicots</th>
<th>Gite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points des sites</td>
<td>ROCs : 10, 11, 12, 13, 14</td>
<td>ROCs : 28, 29, 30, 31, 55, 56, 57, 58, 59, 61, 62</td>
<td>ROCs : 32, 33, 34, 35, 36, 37, 54</td>
<td>ROCs : 38, 39, 40, 41</td>
<td>ROCs : 42, 43, 44, 45, 46, 47</td>
<td>ROCs : 48, 49, 50, 51, 52, 53, 25, 60</td>
</tr>
<tr>
<td>Accessibilité en temps de marche</td>
<td>45 min-1h30</td>
<td>40 min-2h15</td>
<td>20-50 min</td>
<td>5-40 min</td>
<td>1h30</td>
<td>1h45-2h15</td>
</tr>
<tr>
<td>Contrôle des rats</td>
<td>Oui</td>
<td>Partiel</td>
<td>Non</td>
<td>Depuis 2009</td>
<td>Oui</td>
<td>Non</td>
</tr>
<tr>
<td>Présence lézard vert</td>
<td>Non</td>
<td>Une obs en 2005</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td>Moyenne IPA 2005</td>
<td>9,6</td>
<td>5,55</td>
<td>6,64</td>
<td>10,5</td>
<td>9,08</td>
<td>8,88</td>
</tr>
<tr>
<td>Moyenne IPA 2007</td>
<td>8,4</td>
<td>7,61</td>
<td>2,64</td>
<td>10,13</td>
<td>9,13</td>
<td>7,88</td>
</tr>
<tr>
<td>Moyenne IPA 2008</td>
<td>7,9</td>
<td>6,75</td>
<td>5,5</td>
<td>10,5</td>
<td>8,92</td>
<td>8,75</td>
</tr>
<tr>
<td>Moyenne IPA 2010</td>
<td>8</td>
<td>6,05</td>
<td>5,14</td>
<td>4,13</td>
<td>6,75</td>
<td>6,88</td>
</tr>
<tr>
<td>Moyenne IPA par site sur les 4 années</td>
<td>8,48</td>
<td>6,41</td>
<td>4,98</td>
<td>8,42</td>
<td>8,41</td>
<td>8,05</td>
</tr>
</tbody>
</table>
III. MATERIEL ET METHODES

Tous les appâts utilisés lors des expérimentations sont non-empoisonnés, mais restent identiques d'aspect, de goût et d'odeur à ceux utilisés lors des actions de dératisation. Ils se présentent sous forme de granulés verts de 10 mm de section pesant 2 grammes (figure 7).
Les appâts doivent réunir plusieurs conditions pour un succès maximal :

- être attractifs pour les rats,
- résister à l'épandage aérien,
- résister le plus longtemps possible sur le terrain aux conditions environnementales (précipitations, hygrométrie, ...), de façon à ce que des individus-cibles trop jeunes pour être atteints lors de l'épandage puissent y avoir accès après sevrage (3-4 semaines). Cela implique de résister à environ 100 mm de pluie.

En fonction de ces caractéristiques et parce qu'il a été longuement testé dans toutes les dernières éradications insulaires, le Pestoff Rodent Bait de fabrication néozélandaise (compagnie ACP) est recommandé et utilisé (Micol 2010).

Ces actions se déroulent sur les parcelles 1 et 2 de la zone d'étude et se découpent en 3 axes principaux :

- protocole de Capture-Marquage-Recapture des rats sur les parcelles test afin de préciser la densité des rats dans la réserve,
- protocole d'évaluation de Durabilité et Disponibilité des appâts afin de répondre à l'objectif d'ajustement de la densité d'appâts,
- protocole de l'Évaluation des impacts collatéraux (stage en parallèle).

Les protocoles des deux premiers points sont détaillés dans ce chapitre. Ils seront mis en place dans le but de rassembler davantage d'informations concernant un éventuel épandage aérien de raticide.
Figure 7 : Granulé non-empoisonnés utilisés pour l’étude (photo T. Micol).
1) Protocole de Capture-Marquage-Recapture (CMR) de rats

- **Mise en place des grilles de piégeage**

Les cages (figure 8, annexe 6) sont situés au sol. Le piégeage est réalisé sur une grille de 100m*40m pour P1 et de 110m*40m pour P2, les pièges sont espacés de 10m.

Le nombre de cages et leur emplacement ont dépendu de la topographie des zones test. Ainsi, 40 cages ont été placées pour la parcelle 1 et 44 pour la parcelle 2. La disposition des placettes a ensuite été géoréférencée (localisation GPS et décamètre, voir annexe 7) pour comparer ultérieurement les résultats entre la parcelle 1 (non dératisé) et 2 (contrôle des populations de rats à moins de 100 m).

- **Déroulement des opérations sur une grille**

Chronologiquement, l’ensemble du protocole se déroule comme suit pour une grille :

- **1er jour** : traçage des lignes, **placement des cages** et géolocalisation (références GPS),
- **du 2ème au 5ème jour** : relève des pièges pendant les jours qui suivent la pose des cages, **marquage et mesure** puis **recapture**,
- **6ème jour** : dernière séance de relève et enlèvement des cages.

Les deux opérations de piégeage durent respectivement 5 et 8 nuits (pour des raisons d’organisation et de limite de temps). L’appât utilisé dans les cages est identique pour toutes les opérations (pommes de terre + pâte d’arachide).

Chaque rat capturé est sexé et marqué (clip auriculaire avec identification par numéro unique), puis relâché. Chaque jour suivant la pose des cages, les appâts sont renouvelés et la position sur la grille de chaque rat éventuellement recapturé est notée. Le dernier jour de recapture, tous les rats piégés sont euthanasiés.
Figure 8 : Piège utilisé pour la capture (photo Petitpas).

Figure 9 : Schéma théorique d’une grille de piégeage de 0,4 ha.
• **Prise de données**

Les résultats des piégeages sont notés dans le Tableau IV. Ils sont ensuite consignés dans une base de donnée à partir des fiches terrain.

• **Traitements des données**

Les traitements statistiques sont effectués à partir du logiciel R (version 2.13.0), et du package *secr* (version 2.0.0) correspondant à des « fonctions d'estimation de densité d'une population animale distribuée dans l'espace et échantillonnée à l'aide d'une grille de détecteurs passifs » (Package 'secr'. February 21, 2011).

Pour envisager des modèles théoriques satisfaisant la réalité, le logiciel a besoin de variables précises et attribuées pour chaque occurrence. Les données utilisées ont été les captures, recaptures et pertes uniquement. Des calculs supplémentaires de domaines vitaux et de déplacements maximum sont réalisés. Pour les domaines vitaux (DV), la formule est la suivante :

$$DV = \pi (\sigma \times 3)^2$$

Où \(\sigma\), estimé par le logiciel, correspond à une échelle spatiale de la fonction de détection (en mètres), soit la valeur dont le triple donne la distance (entre la cage et le centre du domaine vital d’un individu) à partir de laquelle la probabilité de capture est considérée comme nulle (figure 10).

La formule donne donc la superficie d’un cercle correspondant au domaine vital hypothétique d’un rat du secteur échantillonné.

Les calculs de déplacements maximum suivent le théorème de Pythagore sur les triangles rectangles \((a^2+b^2 = c^2\) où \(c\) est l’hypoténuse du triangle\) et donne, par session de CMR, le déplacement maximal d’un rat en une nuit lors de cette session (simplement estimé à partir des deux captures successives de l’individu).
Tableau IV : Notation des résultats de piégeage (SEOR 2005)

<table>
<thead>
<tr>
<th>CAPTURE VIRTUELLE</th>
<th>PA1</th>
<th>Piège amorcé et appât en place</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PD1</td>
<td>Piège désamorcé mais appât toujours en place</td>
</tr>
<tr>
<td>CAPTURE RÉELLE</td>
<td>PA2</td>
<td>Piège amorcé mais appât disparu</td>
</tr>
<tr>
<td></td>
<td>PD2</td>
<td>Piège désamorcé et appât disparu</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>Rat capturé</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR= Rat noir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RN= Rat surmulot</td>
</tr>
</tbody>
</table>

![Graph](image)

Figure 10 : Distribution semi-normale et valeurs de σ

(source : http://www.answers.com).

\Rightarrow Ici, μ est assimilable à une cage. La fonction de détection de l'étude est du type de la fonction représentée ci-dessus. Plus on s'écarte de la cage, plus la probabilité de détection d'un individu diminue.
2) Protocoles d'utilisation d'appâts non-empoisonnés pour des tests de Durabilité et de Disponibilité

- *Durabilité des appâts*

La disposition des placettes est telle qu'elle couvre une superficie de 100m² (100m*1m) (figure 11). Le test de durabilité est réalisé pendant 8 jours sur la parcelle 1 et pendant 15 jours sur la parcelle 2 (pour des raisons d'organisation et de limite de temps). Sur la parcelle 1, 10 cages test fermées contenant quelques granulés non-empoisonnés ont été disposés tous les 10 m à l'abri des rats et de façon à couvrir les différents milieux (fond de ravine, pente, crête). En revanche, sur la seconde parcelle, seulement 5 cages ont été disposées de manière aléatoire en raison d'un nombre limité de pièges.

Le système anti-rats ne modifie pas les données d'humidité et de température. Les appâts sont disposés à terre et en hauteur puis géoréférencés. Une quarantaine de granulés et 10 cages au maximum sont donc nécessaires à l'élaboration de ce test.

Des caractéristiques météorologiques et biologiques du milieu sont récupérées du fait de leur possible incidence sur la durabilité des appâts :

- les précipitations,
- le type de végétation, substrat.

Les granulés sont également photographiés tous les 1 à 3 jours jusqu'à la fin du protocole, de manière à visualiser l'évolution en terme d'aspect et de couleur. Les réglages de l'appareil photographique ont été adaptés tout au long de la durée du test pour ne pas modifier la lumière ou la couleur, ce qui aurait pour conséquence de biaiser les résultats.
Figure 11 : Schéma théorique d'un transect pour les tests de durabilité des appâts.
• **Disponibilité des appâts**

Un transect de 100m de long est installé sur chaque parcelle avec 1 appât non-empoisonné de coloration verte (figure 12) tous les mètres, de façon à mimer l'épandage aérien en respectant la dose d'appâts par défaut (15 kg/ha). Les granulés sont disposés à terre et en hauteur. Ils sont ensuite géoréférencés et localisés sur le terrain à l'aide de rubalisés. 100 appâts sont donc nécessaires à la réalisation de ce test par transect.

La consommation de chacun des 100 granulés est alors suivie quotidiennement et notée sur une fiche terrain (consommé/non-consommé).

• **Conclusions**

L'objectif de ces tests est d'établir un compromis entre densité d'appâts / durabilité / disponibilité pour les rats. La corrélation est recherchée pour pouvoir ajuster une quantité idéale de poison par hectare à mettre à disposition des rats.
Figure 12 : Appât disposé pour les tests de consommation (photo Petitpas).
IV. RESULTATS

1) CMR

Deux espèces ont été identifiées lors des captures : *Rattus rattus*, le Rat noir et *Rattus norvegicus*, le Surmulot. Cette distinction n’a pas été prise en compte pour le traitement statistique mais on peut noter que la plupart des rats capturés étaient des rats noirs : seulement 10 % (2 rats sur les 20 piégés) de P1 étaient des *Rattus norvegicus* et 8 % (2 rats sur les 24 piégés) de P2.

- *Parcelle 1 : Plaine d’Affouches*

Les résultats traités à partir des données de la première session de Capture-Marquage-Recapture sont présentés dans le Tableau V.

Dès à présent, il est possible de calculer le taux de recapture de la session :
- 55 % (11 rats sur 20) ont été recapturés au moins une fois,
- 35 % (7/20) au moins 2 fois,
- 10 % (2/20) ont été recapturés 3 fois.

Après traitement des données sous logiciel informatique R, différents résultats apparaissent. La vraisemblance du modèle, caractérisée par les critères d’Akaïké (AIC) et d’Akaïké ajustés (AICc) en fonction des paramètres bêta retenus par le logiciel (comportements animaux, espaces vitaux, ...) offrent respectivement des valeurs de 318,3 et 319,8.

Dans un premier temps, les déplacements des rats ont pu être modélisés (figure 13). La distance maximale parcourue par un rat entre deux nuits de capture lors de cette session est de 22,36 m environ (arrondi au centième).

Les valeurs liées à la densité de rats de la parcelle 1 sont consignées dans le tableau VI. La valeur de l’aire réelle de la zone échantillonnée (Mask area), prenant en compte les espaces vitaux des rats capturés, est estimée à 6,71 ha.

On peut calculer grâce à l’estimation de la valeur de sigma la valeur probable de la superficie du domaine vital (DV) d’un rat de cette parcelle :

\[DV = \pi \times (15,58399722 \times 3)^2 \approx 6866,73 \text{ m}^2 \]

Soit environ 0,69 hectare de domaine vital par rat.
Tableau V : Récapitulatif des captures de P1.

<table>
<thead>
<tr>
<th>Nombre de cages</th>
<th>Nombre de nuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre captures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 fois</td>
</tr>
<tr>
<td>2 fois</td>
</tr>
<tr>
<td>3 fois</td>
</tr>
<tr>
<td>4 fois</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre Rats piégés</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre ♂</th>
<th>Nombre ♀</th>
<th>Nombre juv</th>
<th>Mortalité</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 13 : Estimation des déplacements individuels sur P1.

Tableau VI : Estimations des valeurs des paramètres de population sur P1 (retenus par le modèle).

<table>
<thead>
<tr>
<th></th>
<th>Valeur</th>
<th>Ecart-type</th>
<th>Limite inférieure de l'intervalle de confiance</th>
<th>Limite supérieure de l'intervalle de confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densité (rats/ha)</td>
<td>20,8</td>
<td>7</td>
<td>10,9</td>
<td>39,6</td>
</tr>
<tr>
<td>Sigma</td>
<td>15,6</td>
<td>3</td>
<td>10,7</td>
<td>22,8</td>
</tr>
</tbody>
</table>
• **Parcelle 2 : Lataniers**

Les résultats traités à partir des données de la seconde session de Capture-Marquage-Recapture sont présentés ci-dessous (tableau VII).

Dès à présent, il est possible de calculer le taux de recapture de la session :
- 25,0 % (6 rats sur 24) ont été recapturés au moins une fois,
- 4,2% (1/24) ont été recapturés 2 fois.

Les critères d’Akaïké (AIC) et d’Akaïké ajustés (AICc) offrent respectivement des valeurs de 270,9 et 272,1.

Les déplacements des rats ont pu être modélisés pour le site des Lataniers (figure 14). La distance maximale parcourue par un rat entre deux nuits de capture lors de cette session est de 14,14 m environ (arrondi au centième).

Les valeurs liées à la densité de rats de la parcelle 2 sont consignées dans le tableau VIII. La valeur de l’aire réelle de la zone échantillonnée est estimée à 6,86 ha.

On peut calculer une estimation au centième de la superficie du domaine vital d’un rat de cette parcelle :

\[DV = \pi \times (12,11786613 \times 3)^2 \approx 4622,78 \text{ m}^2 \]

Soit environ 0,46 hectare de domaine vital par rat.
Tableau VII : Récapitulatif des captures de P2.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de cages</td>
<td>44</td>
</tr>
<tr>
<td>Nombre de nuits</td>
<td>8</td>
</tr>
<tr>
<td>Nombre captures</td>
<td></td>
</tr>
<tr>
<td>1 fois</td>
<td>18</td>
</tr>
<tr>
<td>2 fois</td>
<td>5</td>
</tr>
<tr>
<td>3 fois</td>
<td>1</td>
</tr>
<tr>
<td>4 fois</td>
<td>0</td>
</tr>
<tr>
<td>Nombre Rats piégés</td>
<td>24</td>
</tr>
<tr>
<td>Nombre 2</td>
<td>12</td>
</tr>
<tr>
<td>Nombre 3</td>
<td>11</td>
</tr>
<tr>
<td>Nombre juv (2 et 3)</td>
<td>5 ?</td>
</tr>
<tr>
<td>Mortalité</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 14 : Estimation des déplacements individuels sur P2.

Tableau VIII : Estimations des valeurs des paramètres de population sur P2 (retenus par le modèle).

<table>
<thead>
<tr>
<th></th>
<th>Valeur</th>
<th>Ecart-type</th>
<th>Limite inférieure de l'intervalle de confiance</th>
<th>Limite supérieure de l'intervalle de confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densité (rats/ha)</td>
<td>53,9</td>
<td>20,3</td>
<td>26,4</td>
<td>110,1</td>
</tr>
<tr>
<td>Sigma</td>
<td>12,1</td>
<td>3</td>
<td>7,5</td>
<td>19,5</td>
</tr>
</tbody>
</table>
2) Durabilité et Disponibilité des appâts

- Durabilité

En raison de la limite de temps impari à la réalisation de l'étude, le suivi des photographies des granulés n'a pu se faire jusqu'à leur dégradation complète. Cependant, les résultats obtenus apportent certaines informations lorsqu'on les compare aux granulés "frais" (annexe 8). Des caractéristiques simples des appâts ont été retenues pour se figurer le niveau de dégradation des granulés : texture, couleur et traces de consommations (imputables à d'autres consommateurs que les rats tels que des gastéropodes ou des champignons) (tableau IX).

En prenant l'humidité, les granulés s'amollissent et gonflent légèrement, mais ils restent compacts et ne s'émiètent pas jusqu'à environ 8 à 10 jours. Ils reprennent un aspect sec à la suite d'une période de forte humidité si les conditions hygrométriques sont favorables. D'autre part, la couleur verte attirant l'oeil ternit progressivement, jusqu'à virer vers une teinte brune. Sur le second site, relativement plus humide, le développement de moisissures a été observé dès le 6ème jour suivant la pose des appâts. De plus, la consommation des granulés par une espèce d'escargot et de limace, bien que modérée, a été mise en évidence à plusieurs reprises. Il faut ajouter que la consommation par les gastéropodes ne concerne que la surface des appâts et diminue au bout de 6 à 8 jours, lorsque les moisissures commencent à se développer. Il convient de rappeler que la molécule active, s'agissant d'un anti-coagulant, n'a apparemment pas d'effets sur les invertébrés.

La disparition complète suite à la dégradation des granulés n'a donc pas pu être observée, pourtant certaines cages ont été retrouvées vides assez rapidement après le début des expérimentations.

Une étude plus poussée a déjà été réalisée concernant la durabilité de blocs d'appâts (Morriss & al 2008) Des photographies d'appâts testés accompagnés de témoins ont été prises à différents temps (2, 3.5, 5, 8 et 12 mois) permettant un suivi précis de l'impact du temps et des conditions météorologiques. Cependant cette publication n'offre qu'un ordre d'idée sur la durabilité car les blocs sont de taille supérieure aux granulés.
<table>
<thead>
<tr>
<th>Date</th>
<th>Texture</th>
<th>Coulent</th>
<th>Autres comportements</th>
<th>Date</th>
<th>Texture</th>
<th>Coulent</th>
<th>Autres comportements</th>
<th>Date</th>
<th>Texture</th>
<th>Coulent</th>
<th>Autres comportements</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
<tr>
<td>10/05/11</td>
</tr>
</tbody>
</table>

Tableau IX : Synthèse des résultats de durabilité
• **Disponibilité**

Sur le site de la Plaine d’Affouches (P1), deux sessions de test ont été réalisées sur une ligne de 84 m (annexe 9). Pour chacune d’elle, 89 appâts ont été disposés à des hauteurs différentes et les relevés ont été effectués dans les 8 jours suivants. Les hauteurs des 89 appâts ont été notées dans le tableau X. Sur le site des Lataniers (P2), une unique session a été réalisée le long d’une ligne de 96 m (annexe 9). Les hauteurs des 99 appâts utilisés ont été notées dans le tableau X.

Le suivi de la consommation a ensuite permis d’établir des pourcentages de consommation. À partir de ces résultats, un graphe de comparaison des secteurs et des sessions a ainsi pu être tracé sur le nombre total de granulés (figure 15).

Les résultats montrent une consommation rapide du nombre d’appâts sur P1 : au bout de 2 jours, au moins 80 % des appâts ont été consommés tandis qu’un intervalle de temps de 6 jours est estimé pour une consommation complète des appâts (1ère session : restent 2 appâts au bout de 6 jours, placés à des endroits difficiles d’accès pour les rats). On remarque cependant une accélération de la consommation des appâts pour la deuxième session de P1.

Sur le test P2 les appâts disparaissent moins rapidement et ils ne sont pas tous consommés au bout de 8 jours passés dans la forêt. Le développement de champignons a d’ailleurs pu être observé sur cette parcelle (figure 16).

![Figure 16 : Développement de champignons sur un appât (après 8 jours en forêt) (photo : Petitpas).](image)

Les granulés situés au dessus de 50 cm du sol sont globalement moins consommés que ceux placés au sol et jusqu’à 50 cm, à l’exception de la fin des tests où les granulés au-dessus de 1 m disparaissent (figure 17 pour la parcelle 1). Les résultats liés à la hauteur sont similaires sur les deux parcelles.
Tableau X : Hauteur des appâts disposés lors des tests de disponibilité sur la plaine d’Affouches (P1) et aux Lataniers (P2).

<table>
<thead>
<tr>
<th>Nombre d’appâts</th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauteur (cm)</td>
<td>1ère session</td>
<td>2ème session</td>
</tr>
<tr>
<td>Sol</td>
<td>72</td>
<td>67</td>
</tr>
<tr>
<td>[0 ; 50]</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>[50 ; 100]</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>> 100</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>89</td>
<td>89</td>
</tr>
</tbody>
</table>

Figure 15 : Comparaison de l’évolution de la consommation d’appâts sur les 2 parcelles d’étude.

Figure 17 : Suivi de la consommation des appâts pour différentes hauteurs.
IV. DISCUSSION

1) Interprétation des données des Captures-Marquages-Recaptures

- **Réalisation et vraisemblance des modèles**

Les deux sessions de CMR ont permis d'obtenir des résultats suffisants pour établir par informatique des modèles théoriques tendant à approcher la réalité. Dans les deux cas, des critères de vraisemblance, appelés critères d'Akaïké, ont été calculés pour rendre compte du réalisme de chaque modèle. Le modèle retenu par le logiciel est celui qui présente la plus grande vraisemblance (critères d'Akaïké les plus faibles). Il existe deux types de critères d'Akaïké : les critères d'Akaïké simples (AIC) et les critères d'Akaïké ajustés (AICc). Ces derniers prennent en compte les paramètres bêta du modèle, ce qui suppose un ajustement des valeurs.

Pour le modèle attribué à la Plaine d'Affouches, AIC et AICc sont respectivement de 318,3 et de 319,8 tandis qu'aux Lataniers, ces critères sont respectivement de 270,9 et de 272,1. Le modèle proposé par le logiciel pour la deuxième session est donc plus vraisemblable que celui proposé pour la première session bien qu'ils soient tous deux les plus vraisemblables isolément, selon le logiciel informatique de modélisation.

- **Densités de population**

Le modèle retenu pour la première session estime la densité de population de rats à environ 20,8 rats/ha avec un écart-type de 7 et un intervalle de confiance allant de 10,9 à 39,6, ce qui est raisonnable. Le modèle de la deuxième session propose une densité bien plus forte (53,9 rats/ha) mais possède un écart-type haut (20) et un intervalle de confiance très large (26,4 à 110,1). La valeur moyenne de densité estimée pour Les Lataniers est donc beaucoup moins fiable que celle estimée pour la Plaine d'Affouches. Cette différence s'explique par le nombre de recaptures beaucoup plus faible pour la deuxième session de CMR que pour la première (25% de recapturés au moins une fois contre 45% pour la Plaine d'Affouches). En effet, avec si peu de recaptures, les informations liées aux déplacements des individus sont lacunaires. Il est donc très difficile de savoir si un même rat sur ce site a tendance à se déplacer beaucoup ou peu, c'est-à-dire si la densité de rats sur ce même site est moyenne ou très forte.

Cette différence de densité pourrait s'expliquer par une plus forte abondance de nourriture dans le secteur des Lataniers.
D'autres secteurs insulaires où le Rat Noir est invasif ont connu ce genre de procédé expérimental d'estimation de densités de population. Les résultats proposent des densités proches de celles estimées ici. Pour exemple, sur l'île d'Europa, la population de *Rattus rattus* a été estimée d'environ 39 à 65 rats/ha en zone de forêt tandis que sur l'île de Juan de Nova, les estimations sont d'environ 12 à 29 rats/ha en zone de forêt (Ringler 2009).

Les faciès considérés par ces études concernent des forêts de basses altitudes et de milieux relativement secs, ce qui n'est pas le cas des zones échantillonnées à la Roche-Écrite. Si les densités sont effectivement voisines, pour le type de milieu couvert par l'étude, elles sont particulièrement fortes dans la réserve de la Roche-Écrite.

- **Domaines vitaux et espacements des cages**

Le domaine vital d'un rat pour la première et la deuxième session de CMR est estimé respectivement à 0,69 ha et 0,46 ha. Compte tenu des valeurs de densité de population des deux sites, cette différence est logique puisqu'une densité plus faible supposera une compétitivité moins forte et donc la possibilité pour chaque individu de posséder un domaine vital plus grand. Aussi, par la notion d'abondance de nourriture, on peut supposer que les individus nécessitent un domaine vital plus grand à la Plaine d'Affouches dans l'idée où ce secteur présente moins de disponibilité en nourriture. Les deux hypothèses pourraient également intervenir ensemble.

La notion de domaine vital est utile pour optimiser l'espacement des cages lors de sessions de captures ou de stations d'empoisonnement lors de sessions de contrôle. En effet, le domaine vital moyen est calculé à partir d'un sigma (voir protocole CMR) dont le triple donne l'*espacement maximal* en mètres des cages (ou stations) nécessaire pour que tous les individus de la zone soient théoriquement concernés par le procédé (capture ou empoisonnement) (Ringler 2009). Ici, pour la première parcelle, cette valeur est d'environ 46m et de 36m environ pour la seconde parcelle. On peut donc considérer dans les deux cas que l'espacement lors de l'étude a été largement suffisant (10m).
• **Masques**

Chaque modèle proposé par le logiciel présente un masque, c'est-à-dire la zone véritablement échantillonnée par l'étude lorsque l'on prend en compte les espaces vitaux des rats potentiellement concernés par l'échantillonnage. Le masque d'un modèle est donc beaucoup plus grand que l'aire délimitée par les cages, bien que tous deux soient liés. Les masques de la première et la deuxième session sont respectivement de 6,71 ha et 6,86 ha, donc équivalents, bien que la zone délimitée par les cages soit plus grande lors de la deuxième session. Cette similitude des masques s'expliquent par la plus petite taille des domaines vitaux sur le site des Lataniers (P2).

Cette notion de masque est primordiale dans l'optique d'un échantillonnage à large échelle d'une zone comme la Roche-Écrite. En effet, le nombre de CMR nécessaires pour couvrir le terrain ciblé serait nettement plus faible que la simple addition de la superficie des grilles de cages.

2) **Analyse des données de Durabilité et de Disponibilité**

• **Durabilité**

Après analyse des données photographiques et la mise en lien avec les données météorologiques (tableau XI), il a été déterminé visuellement que :

- ✔ jusqu'à 6 jours maximum suivant la pose à la Plaine d'Affouches, soit 73 mm de précipitations en cumulé, les appâts restent appétants.
- ✔ jusqu'à 7 jours maximum aux Lataniers, soit 12 mm en cumulé, l'attirance des appâts est convenable.

L'appétance des appâts est donc effective sur une durée d'une semaine environ.

Pourtant, le Pestoff Rodent Bait en granulés est théoriquement censé résister à 100 mm de précipitations (Micol 2010), soit davantage que celles relevées pour les deux sites. Il serait envisageable de relier préférentiellement la dégradation des appâts à une autre variable, telle que l'hygrométrie.

Il est très probable que l'aspect spongieux observé après deux à trois nuits diminue l'attractivité visuelle et olfactive. De plus, un appât qui sèche après une période de forte humidité pourrait potentiellement perdre sa valeur gustative.

Concernant la perte de la coloration verte par ternissement, un autre stage en cours à la SEOR et réalisé par Valentin Guiheneuf a montré que les rats se nourrissent préférentiellement la nuit en se repérant par l'odorat, cette perte de couleur n'a donc pas d'impact sur la consommation des appâts.
Tableau XI : Données de précipitations obtenues auprès de la station météo du Colorado (Météo France).

<table>
<thead>
<tr>
<th>Date</th>
<th>03/05</th>
<th>04/05</th>
<th>05/05</th>
<th>06/05</th>
<th>07/05</th>
<th>08/05</th>
<th>09/05</th>
<th>10/05</th>
<th>11/05</th>
<th>12/05</th>
<th>13/05</th>
<th>14/05</th>
<th>15/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Précipitations (mm)</td>
<td>4,6</td>
<td>44,6</td>
<td>1</td>
<td>1</td>
<td>20,2</td>
<td>0,2</td>
<td>1</td>
<td>35,2</td>
<td>6,6</td>
<td>1,2</td>
<td>1</td>
<td>15,4</td>
<td>37,6</td>
</tr>
<tr>
<td>Cumulé (mm)</td>
<td>4,6</td>
<td>49,2</td>
<td>50,2</td>
<td>51,2</td>
<td>71,4</td>
<td>71,6</td>
<td>72,6</td>
<td>107,8</td>
<td>114,4</td>
<td>115,6</td>
<td>116,6</td>
<td>132</td>
<td>169,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>16/05</th>
<th>17/05</th>
<th>18/05</th>
<th>19/05</th>
<th>20/05</th>
<th>21/05</th>
<th>22/05</th>
<th>23/05</th>
<th>24/05</th>
<th>25/05</th>
<th>26/05</th>
<th>27/05</th>
<th>28/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Précipitations (mm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11,8</td>
<td>36,6</td>
<td>0,2</td>
<td>4,8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cumulé (mm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>12</td>
<td>48,6</td>
<td>48,8</td>
<td>53,6</td>
<td>53,6</td>
<td>53,6</td>
<td>53,6</td>
</tr>
</tbody>
</table>
Par ailleurs, le développement de Fungi et la consommation de la surface des granulés par des espèces de gastéropodes (dépôt de bave) font partie des causes privilégiées pouvant expliquer une chute d'appétance des appâts.

Il est à souligner que la première session de test ne s’est pas déroulée correctement puisque 9 cages sur 10 se sont retrouvées vides au bout du sixième jour, l'hypothèse la plus probable étant que les rats parviendraient à se saisir des granulés à travers les grilles de la cage.

Aussi, l’évolution de la dégradation reste à développer, notamment en améliorant le suivi photographique quotidien et en multipliant les séries de test.

Le protocole reste donc à être amélioré si besoin est de renouveler l'expérience de durabilité. Il serait aussi intéressant de mettre au point un protocole de tests d'appétance se traduisant par un suivi quotidien de celle-ci en proposant à des rats de laboratoire ou capturés des granulés "frais" et des granulés plus ou moins dégradés.

- **Disponibilité**

La consommation plus rapide sur la seconde session de la parcelle 1 peut s'expliquer par le fait que les rats consommateurs mémorisent la présence d'appâts (nourriture) dans cette zone et y retournent les jours suivants de plus en plus fréquemment afin de consommer ces appâts.

La moindre consommation au niveau de la parcelle 2 amène plusieurs hypothèses :
- une disponibilité en nourriture naturelle plus forte et donc une consommation des appâts moindre. Ceci est appuyé par le meilleur état écologique global de la forêt primaire aux Lataniers qu’à la Plaine d’Affouches,
- la ligne de consommation, placée proche de la zone de piégeage CMR avec appâts, n'a pas donné lieu à une estimation représentative puisque les rats piégés dans le cadre de la CMR ne sont plus disponibles pour consommer les granulés tandis que l'appât "pomme de terre – pâte d'arachides" possède certainement une plus grande attractivité,
- une dernière possibilité prend en compte l'appétance des appâts. Au vu des résultats de durabilité, les granulés perdraient plus rapidement leur attrayance par rapport à la parcelle 1.
L’influence de la hauteur sur la consommation d’appâts a été testée, cependant assez peu de granulés ont été mis en hauteur en proportion, et les résultats manquent probablement de significativité (test statistique ?). Néanmoins, la consommation des appâts est visiblement supérieure au sol que dans la végétation (fourches de branche, de feuilles). Bien qu’arboricole dans ses déplacements, le Rat noir recherche peut-être sa nourriture prioritairement au sol, comme le suggèreraient les résultats de CMRs.

On note que les résultats de la seconde session de la parcelle 1 n’ont pas été utilisés à propos de la hauteur car les rats ont pu mémoriser l’emplacement des appâts, ce qui biaise cette partie du test.

- **Compromis**

La densité d'appâts utilisée en largage aérien a été calculée dans le tableau XII.

L’ensemble des tests sur les granulés non-empoisonnés effectués au cours de l'étude permet d’obtenir un compromis "densité appâts/disponibilité/durabilité" :

- **Disponibilité** : 6-7 jours maximum.

- **Durabilité** : 5 à 7 jours (mais semble largement dépendre de l’hygrométrie).

La quantité de raticide dépend évidemment de la densité de rats et de la surface à traiter, cette dernière reste donc à déterminer. Il faut également prendre en compte la météo et donc choisir le moment de l'épandage en fonction du degré d'humidité qu'il risque d'y avoir en sous-bois.

Le largage par hélicoptère permet en outre d'atteindre des zones difficiles d'accès par le sol et de couvrir des surfaces plus importantes en rapport au temps de main-d'oeuvre nécessaire. Il est donc le moyen privilégié pour traiter en raticides des escarpements, haut de falaises etc ... topographies fréquentes à l’île de La Réunion et particulièrement sur le massif de la Grande Montagne.
Tableau XII : Quantité d'appâts par m².

<table>
<thead>
<tr>
<th>Epandage aérien (kg/ha)</th>
<th>Dose (g/m²)</th>
<th>Poids granulé (g)</th>
<th>Granulés /m² (théorique)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (2 sessions)</td>
<td>1,5</td>
<td>2</td>
<td>0,75</td>
</tr>
</tbody>
</table>
3) Optimisation des densités d'appâts et ouverture

À partir des résultats de disponibilité et de CMR, il est possible d'estimer combien de rats auraient potentiellement pu être empoisonnés suite à la disposition des appâts. Il est à noter que les rats ne semblent prélever qu'un seul granulé pour se nourrir sur un même site (cf. Stage en cours de Valentin Guiheneuf sur les impacts collatéraux de raticides). La dose létale de poison est théoriquement contenue dans deux granulés (tableau XIII) et agit au bout de 7 jours (Micol 2010).

Pour la première session sur le site de la Plaine d'Affouches, 87 appâts ont été consommés sur toute la durée du test. Donc, de manière optimale, 43 rats auront été empoisonnés pour une zone d'environ 1,66 ha (masque de la ligne de consommation, prenant en compte les espaces vitaux : \([84+2x(3x15,6)] \times [2x(3x15,6)]\) concernant théoriquement 35 rats \((1,66x20,8)\). On peut donc considérer qu'au mieux tous les rats de la zone ont été empoisonnés.

Pour la session du site des Lataniers, 91 appâts ont été consommés sur toute la durée du test. Donc, de manière optimale toujours, 45 rats auront été empoisonnés pour une zone de 1,22 ha \(\{96+2x(3x12,1)\} \times [2x(3x12,1)]\) concernant théoriquement 66 rats. On peut donc considérer qu'au mieux 65 % des rats de cette zone ont été empoisonnés. Cette information est moins solide que la précédente de par les biais présentés auparavant. L'expérience mériterait d'être renouvelée de manière isolée pour confirmer si la quantité d'appâts à fournir doit effectivement être plus importante pour permettre un empoisonnement total.

La quantité initiale de 15 kg d'appâts à l'hectare est donc correcte mais certaines zones à disponibilité de nourriture forte pourraient subir un empoisonnement plus intensif pour permettre un empoisonnement général des rats. Dans le cas des Lataniers, 24 kg à l'hectare semblerait déjà plus indiqué \((100/65) \times 15\).

Il faut cependant prendre en compte les probabilités de consommation de plus de 2 appâts par un même rat, la perte d'appétance des appâts due à leur dégradation et la prédation non attendue par d'autres êtres vivants. Les estimations ci-dessus correspondent donc à un idéal de contrôle des rats mais la réalité risque d'être assez différente et les tests de suivi de présence pourront être réalisés grâce à des "tracking tunnels", tunnels à encre où les individus laissent leurs empreintes.
Tableau XIII : Doses létales de poisons pour le rat noir et les espèces aviaires non-cibles.

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Poids moyen (g)</th>
<th>Poids létal (g d'appât)</th>
<th>Nombre de granulés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat noir</td>
<td>150</td>
<td>3</td>
<td>1,5</td>
</tr>
<tr>
<td>Oiseau blanc</td>
<td>7,5</td>
<td>0,15</td>
<td>0,08</td>
</tr>
<tr>
<td>Oiseau vert</td>
<td>9,5</td>
<td>0,19</td>
<td>0,1</td>
</tr>
<tr>
<td>Tec-tec</td>
<td>12,5</td>
<td>0,25</td>
<td>0,13</td>
</tr>
<tr>
<td>Oiseau la vierge</td>
<td>11</td>
<td>0,22</td>
<td>0,11</td>
</tr>
<tr>
<td>Tuit-tuit</td>
<td>32,5</td>
<td>0,65</td>
<td>0,33</td>
</tr>
<tr>
<td>Merle pays</td>
<td>54</td>
<td>1,08</td>
<td>0,54</td>
</tr>
<tr>
<td>Papangue (« + léger »)</td>
<td>650</td>
<td>13</td>
<td>6,5</td>
</tr>
<tr>
<td>Papangue (« +lourd »)</td>
<td>1000</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Salangane</td>
<td>10</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Cardinal</td>
<td>17,2</td>
<td>0,34</td>
<td>0,17</td>
</tr>
<tr>
<td>Francolin</td>
<td>270</td>
<td>5,4</td>
<td>2,7</td>
</tr>
<tr>
<td>Merle Maurice</td>
<td>32,5</td>
<td>0,65</td>
<td>0,33</td>
</tr>
<tr>
<td>Tourterelle malgache (ramier)</td>
<td>200</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Dose létale (mg d'appât / g) (Micol 2010)

0,02
Bibliographie

Micol, T. (2010) Faisabilité technique d’une éradication de rats sur un site à Pétreil noir (Pseudobulweria aterrima) à La Réunion. réalisé à la demande de la SEOR dans le cadre d’un financement de la DIREN Réunion et du Parc National de La Réunion.

Sautron, A. & Sintre, C. (2010) Étude et modélisation de la dynamique de population de l’Échenilleur de la Réunion (*Coracina newtoni*). Rapport de stage Université de La Réunion/SEOR.

Sites internet consultés :

www.lifecapdom.org

www.seor.fr

www.otago.ac.nz/density
(Package 'secr'. February 21, 2011)

www.iucn.org

Table des annexes :

1 : Fiche descriptive du Tuit-tuit
2 : Méthodes de lutte contre les rongeurs
3 : Détail de l'action A1 du LIFE
4 : Cartes des différents types de végétation indigène et endémique de La Réunion
5 : Définition IPA
6 : Fiche descriptive des pièges
7 : Carte des placettes de CMR des deux parcelles
8 : Données photos des tests de Durabilité
9 : Cartes des transects des tests de Disponibilité
Annexe 1 :

Fiche descriptive de l'Échenilleur de La Réunion Coracina newtoni (SEOR)

Ordre : Passériformes
Famille : Campéphagidae

BIOMÉTRIE
Taille : 20 cm
Poids : 30 - 35 g
Envergure : 30 cm

IDENTIFICATION
Le mâle a le ventre crème, la tête et le dos gris et les ailes noires. La femelle a le dos brun avec le ventre blanc strié de brun.

HABITAT
Il est strictement inféodé aux forêts indigènes.

COMPORTEMENT
Il est peu craintif mais très discret ce qui rend son observation difficile.

REPRODUCTION
La période de reproduction se déroule pendant l’été austral et 2 œufs sont pondus dans un nid en forme de coupe, dont le pourtour est couvert de lichen.

REGIME ALIMENTAIRE
Il se nourrit d’insectes et particulièrement de chenilles et d’araignées.

STATUT
L’espèce, endémique de La Réunion, est rare et localisée sur seulement 12 km² dans la Réserve Naturelle de La Roche Écrite. La population est estimée à 50 à 70 reproducteurs. Cette espèce est protégée : la chasse, la capture ou la vente sont totalement interdites et sont considérées comme un délit passible d’une peine de prison et d’une forte amende.
Annexe 2 :

Méthodes de lutte contre les rongeurs

Différentes techniques de contrôle et/ou d'éradication des populations de rats ont déjà été développées à travers d'autres programmes de conservation (Turning the tide : the eradication of invasive species 2002). Le choix de la méthode utilisée dépend notamment des conditions environnementales biotiques (vulnérabilité des espèces non-cibles) et abiotiques (topographie de l'habitat), des habitudes comportementales de l'espèce en question, de la surface à traiter, tout en prenant compte des réalités économiques du plan mis en action (Howald et al. 2007). Il est à noter que la plupart des recherches affirment que l'empoisonnement reste un des moyens de lutte les plus efficaces et les plus utilisés contre les micromammifères, notamment le rat (Courchamp, Chapuis & Pascal 2003 ; Howald et al. 2007). Suite à l'analyse des différentes méthodologies, il est possible d'en faire ressortir trois différentes :

- **La capture** : les rats sont capturés à l'aide d'appâts et de cages disposés sur le secteur de recherche alimentaire des rats.

- **L'empoisonnement par stations d'appâtage** : ensemble d'appâts empoisonnés disposés en stations sur les territoires des rongeurs. De plus, cette stratégie prend en compte les caractéristiques du poison (goût, odeur, délais d'action ...). En effet, ils peuvent entraîner 2 types de toxicité : primaire (consommation direct des appâts) et secondaire (consommation de rats empoisonnés, contamination de l'eau liée à la consommation). Dans le cas de la diffusion manuelle, le but est d'entraîner la mort de l'individu après l'ingestion d'un unique appât, en limitant les risques pour les espèces non-cibles. Il faut ajouter que le goût, l'odeur des appâts ainsi que la conception de la station d'appâtage sont des caractères à ne surtout pas négliger car les rongeurs y seront sensibles (Thomas & Taylor 2002 ; Rodriguez, Torres & Drummond 2006). L'apparition d'éléments nouveaux tels que les stations d'appâtage ne semblent pas perturber les rats qui peuvent les accepter en une seule journée (Russell, Towns & Clout 2008).

- **L'empoisonnement par diffusion aérienne** : dernière technique en date, développée en Nouvelle-Zélande. Il s'agit d'un largage aérien de produits toxiques pour les rats par hélicoptère (McFadden & Green 1994 ; Thomas & Taylor 2002 ; MacKay, Russell & Murphy 2007). Cette méthode apparaît maintenant de plus en plus communément (Towns & Broome 2003), et plusieurs résultats positifs soutiennent ce mode d'action (Cromarty et al. 2002 ; Veitch. & Clout 1997) qui présente l'intérêt de couvrir de larges zones et notamment des secteurs difficilement accessibles par les voies terrestres.
Le plus souvent, plusieurs techniques sont combinées permettant d'ajouter les avantages de chacune d'entre elles ou de compenser les inconvénients par d'autres procédés (Tableau I) (Courchamp, Chapuis & Pascal 2003). « Use as many methods of killing rats as you can, and never rely on one weapon alone » (Moors 1985). Il conviendra donc d'établir une méthodologie de lutte la plus efficace possible en fonction des différents paramètres.

Malgré tout, un des principaux problèmes survenant après l'action de dératisation est qu'il est en général difficile de différencier la descendance de survivants potentiels et la recolonisation, et ce indépendamment de la technique employée. Cela implique la nécessité de devoir attendre l'apparition d'une éventuelle descendance et parfois de renouveler l'opération pour détruire les survivants (Howald et al. 2007). Par ailleurs, des chiens dressés à repérer les rats peuvent être utilisés en complément pour détecter d'éventuels traces de survivants (Howald et al. 2007).

Enfin, d'un point de vue économique, les coûts sont bien entendu corrélatés à la surface traitée, mais également à l'espèce ciblée, à la date et à l'éloignement de la zone ciblée (Howald et al. 2007).

Tableau : Principaux aspects des diverses techniques de lutte contre le rat.(Parkes & Murphy 2004 ; Warburton & Thomson 2002)

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Avantages</th>
<th>Désavantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture</td>
<td>-minimisation du contact avec les espèces non-cibles</td>
<td>-impossible à moyenne et large échelle</td>
</tr>
<tr>
<td>Stations d'appâtage</td>
<td>-minimisation de la quantité de poison libérée dans l'environnement</td>
<td>-compliqué sur les lieux difficiles d'accès</td>
</tr>
<tr>
<td></td>
<td>-dépôt localisé du poison</td>
<td>-sur des surfaces limitées</td>
</tr>
<tr>
<td></td>
<td>-contrôle de l'absorption</td>
<td>-demande une présence et un travail soutenu sur le terrain</td>
</tr>
<tr>
<td></td>
<td>-utilisation en combinaison avec appâts non-toxiques de détection</td>
<td>-potentiellement coûteux</td>
</tr>
<tr>
<td></td>
<td>-détention aisée des survivants</td>
<td>-suivi et visites régulières peuvent perturber certaines espèces</td>
</tr>
<tr>
<td>Diffusion aérienne (par hélicoptère)</td>
<td>-possible sur les lieux difficiles d'accès</td>
<td>-développement potentiel d'une résistance à la toxine</td>
</tr>
<tr>
<td></td>
<td>-période d'action courte</td>
<td>-Contact non contrôlé</td>
</tr>
<tr>
<td></td>
<td>-surface traitée conséquentes</td>
<td>-impact négatif peu connu</td>
</tr>
<tr>
<td></td>
<td>-peu de main-d'œuvre</td>
<td>-grande quantité de produits toxiques libérée</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-repérage des survivants impossible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-réalisation coûteuse</td>
</tr>
</tbody>
</table>
Annexe 3 :

DETAILS OF PROPOSED ACTIONS

A. Preparatory actions, elaboration of management plans and/or of action plans

Action A.1 Définition d’un état initial et d’une méthodologie de contrôle des rats à La Réunion sur une aire pilote

Description (what, how, where and when)
Dans un premier temps, une recherche bibliographique sera effectuée sur des actions similaires déjà réalisées ailleurs, notamment par voies aériennes. Puis des experts de la LPO et des experts néozélandais seront consultés par leur venue sur place sur les techniques de piégeage et la lutte chimique contre les rats afin de mettre en place un plan d’action efficace sur 4 ans sur la Réserve de la Roche écrite, site de reproduction de l’Échenilleur de La Réunion et surface ciblée pour la future aire de répartition de l’espèce. La méthodologie devra être efficace vis-à-vis des rats tout en ne présentant pas d’impacts négatifs directs et indirects sur l’environnement et les autres espèces.

Afin de pouvoir tester et évaluer cette méthodologie en action C1, un état initial précis sera également dressé d’une part sur les densités de rats en présence, d’autre part sur la répartition, la densité et le succès reproducteur de l’Échenilleur de La Réunion.

Les appâts empoisonnés peuvent entraîner deux types de toxicité : primaire (consommation directe des appâts) ou secondaire (consommation des rats empoisonnés). Pour limiter ces risques plusieurs procédés seront testés en action A1, et mis en place en action C1 :

- Réalisation de tests sur des parcelles témoins avec des appâts non empoisonnés et analyse des espèces les prélevant (par une surveillance d’une durée de 10 heures par exemple).
- Adaptation en fonction des résultats du test précédent de la forme des appâts, des adjuvants, du goût, de l’odeur en fonction des espèces les plus vulnérables.
- Choix des appâts de manière à ce que les rats consomment le plus rapidement possible, sans les déplacer et qu’ils meurent également le plus rapidement possible (dose létale de poison dans chaque appât).
- Ajustement fin de la densité des appâts et de l’échelle de distribution en fonction de la densité de rats encore présents.

De plus, les déchets générés par les utilisateurs de la Réserve de la Roche Ecrite entraînent la prolifération des rats en amont. Une enquête de terrain sera conduite auprès des utilisateurs de la réserve. Elle apportera aux institutions des éléments d’aide à la décision sur cette question des déchets, et notamment au Parc National de La Réunion. L’objectif de l’enquête est de caractériser les utilisateurs du site (touristes, locaux, sportifs…), de comprendre leur perception des lieux et ce qui les amène à abandonner leurs déchets sur cet espace naturel.

Reasons why this action is necessary

Les rats, prédateurs introduits à La Réunion, menacent d’extinction l’Échenilleur de La Réunion, endémique. Les 25 dernières femelles connues de l’espèce sont localisées dans la Réserve de la Roche Écrite. Si la limitation des rats par piègeage y est déjà faite autour des 22 nids connus, cette action a pour objet d’identifier de nouvelles techniques plus efficaces permettant de contrôler les rats sur l’entièreté de la Réserve de la Roche Écrite, avec des coûts humains et financiers similaires à ceux déjà engagés. Ce contrôle des rats à large échelle à pour but de permettre une expansion de la population d’échenilleurs de La Réunion et d’étendre leur aire de répartition. De plus, pour contrôler les densités de rats sur le site, il est nécessaire d’agir simultanément sur tous les facteurs participant à leur prolifération. Les déchets abandonnés sur la Réserve par les visiteurs en dehors des lieux de collecte contribuent au maintien et au développement des populations de rats. Mais la sensibilisation des publics n’est pertinente que si elle est bien ciblée et en lien avec les motivations, les perceptions et les

Beneficiary responsible for implementation

La SEOR sera le pilote de cette action, en lien avec le Parc National de La Réunion, qui y affectera du personnel. Une sous-traitance sera réalisée pour l’enquête de fréquentation sur le site. L’action impliquera la venue d’experts de métropole (LPO) et de Nouvelle-Zélande, ainsi que l’affectation de deux salariés à plein temps pour les suivis et évaluations de terrain et d’un salarié à ¾ temps pour l’analyse des résultats. Ces ressources humaines importantes sont nécessaires au vu des conditions environnementales : la Réserve de la roche écrite est en forêt tropicale dense, et de surcroît accidentée. Les nids d’échenilleurs de La Réunion sont hors des sentiers, en milieu très difficilement pénétrable. Il faut environ 45mn par personne pour parcourir 300 mètres sur le terrain. Chaque journée de terrain doit donc impliquer au minimum deux salariés en fonction des zones, puis nécessite l’analyse et la synthèse des données.

Expected results (quantitative information when possible)

Disposer d’un plan de contrôle des rats en zone coeur de la Réserve, abritant les derniers couples de l’Échenilleur de la Réunion, sur une surface de 100 ha minimum et 200 ha attendus, s’appuyant sur de nouvelles techniques, avec une optimisation des coûts et des impacts par rapport à la surface traitée. Ce plan sera appliqué et évalué au sein de l’action C.1.
Annexe 4 :

Cartes des différents types de végétation indigène et endémique de La Réunion
Annexe 5 :

Indice Ponctuel d’Abondance ou IPA

Cette méthode, standardisée et largement utilisée, est appliquée au groupe des oiseaux terrestres. Elle fournit des informations sur les peuplements d’oiseaux et leur composition, et sont comparables avec d’autres relevés déjà réalisés (dans d’autres secteurs ou au cours d’autres années). Cette méthode constitue une méthode pertinente pour un état initial, comme pour le suivi de l’évolution des peuplements en fonction du temps, associée à des aménagements ou des mesures de gestion.

La période la plus favorable pour la réalisation de ces points d’écoute correspond à la période de reproduction des espèces terrestres, c’est à dire, à La Réunion, pendant l’été austral, de septembre à février. La durée des points d’écoute s’étend sur 10 minutes, en divisant la période d’écoute en 2 périodes de 5 minutes. Cette durée de 10 minutes convient bien aux études réalisées à La Réunion sur les passereaux forestiers, car le nombre d’espèces est assez faible et celles-ci sont relativement faciles à détecter.

Dans la pratique, l’observateur (qui doit être expérimenté, c’est à dire connaître toutes les manifestations sonores de chaque espèce potentiellement présente sur le site) se place sur un des points sélectionnés lors de l’échantillonnage. Généralement, il observe quelques minutes de silence et d’immobilité, afin de se familiariser avec le paysage sonore et les espèces présentes, et surtout, afin de permettre aux oiseaux de reprendre leurs activités. L’objectif est de minimiser les modifications du comportement des oiseaux qui pourraient être induites par la présence de l’observateur. Ensuite, l’observateur note pendant les 5 premières minutes, toutes les espèces repérées à la vue (les jumelles ne peuvent être utilisées que secondairement, pour confirmer une détermination) ou à l’ouie. Il est indispensable de dénombrer les individus différents de chaque espèce recensée. Les comportements sont associés à un individu ou à un couple. Au cours des 5 minutes suivantes, l’observateur note seulement les individus nouvellement contactés.

La période de la journée recommandée doit correspondre à celle où l’activité des oiseaux est maximale, c’est à dire le matin, à partir du lever du soleil (5h30), et pendant les 3 heures qui suivent, en fonction des conditions météorologiques. Un fort ensoleillement ou de fortes chaleurs ont tendance à réduire cette période d’activité. Ceci se vérifie, plus particulièrement dans les zones de basse altitude et dans les forêts clairsemées en zone sèche. En altitude, les points peuvent être réalisés jusqu’à 9h30, toujours en tenant compte de l’effet des conditions météorologiques.
Annexe 6 :

RATIÈRE PLIANTE

CARACTÉRISTIQUES

<table>
<thead>
<tr>
<th>POIDS</th>
<th>460 gr</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIMENSIONS</td>
<td>L : 29 cm - l : 10 cm - H : 10 cm</td>
</tr>
<tr>
<td>MÉCANISME</td>
<td>porte à détente</td>
</tr>
</tbody>
</table>

MATERIAUX

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>grillage galvanisé</th>
</tr>
</thead>
<tbody>
<tr>
<td>MÉCANISME</td>
<td>fil galvanisé</td>
</tr>
</tbody>
</table>

ANIMAUX CAPTURES

<table>
<thead>
<tr>
<th>RONGEURS</th>
<th>jusque 24 cm</th>
</tr>
</thead>
</table>

DOMAINE D'UTILISATION

<table>
<thead>
<tr>
<th>PARTICULIER</th>
<th>caves</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICULTEUR</td>
<td>poulailleurs</td>
</tr>
</tbody>
</table>
Annexe 7 : Carte des placettes de CMR des deux parcelles

Localisation des cages sur les zones d'étude. 1) Plaine d'Affouches. 2) Lataniers. □ emplacement de cage.
Annexe 8 : Données photos de Durabilité (Photos : Boudet & Petitpas).

<table>
<thead>
<tr>
<th>Jour</th>
<th>Plaine d'Affouches</th>
<th>Photographies (cage n°10)</th>
<th>Précipitations (en mm cumulés)</th>
<th>Jour</th>
<th>Lataniers</th>
<th>Photographies (cage n°3)</th>
<th>Précipitations (en mm cumulés)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4,6</td>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>49,2</td>
<td>4</td>
<td></td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>50,2</td>
<td>7</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>51,2</td>
<td>8</td>
<td></td>
<td></td>
<td>48,6</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>72,6</td>
<td>11</td>
<td></td>
<td></td>
<td>53,6</td>
</tr>
</tbody>
</table>
Annexe 9 : Cartes des transects des tests de disponibilité